Home Archived October 29, 2018
Link to USGS home page
South Florida Ecosystem History Project

Home - South Florida Ecosystem History Website
    Biscayne Bay
Florida Bay
    Referenced Data
    Salinity Maps
    Kid's Corner
    Related Links

SOFIA home

photo of Floriday Bay at sunsetPlant and animal communities in the South Florida ecosystem have undergone striking changes over the past few decades. In particular, Florida Bay has been plagued by seagrass die-offs, algal blooms, and declining shellfish and sponge populations. These alterations in the ecosystem have traditionally been attributed to human activities and development in the region. Currently, under the South Florida Initiative of the Ecosystem Program, scientists at the U.S. Geological Survey are studying the paleoecologic changes taking place in Florida Bay in hopes of understanding the physical environment and restoring the region to a a more pristine, natural state.

For more information, contact:
Lynn Brewster-Wingard
MS 926A
USGS National Center
Reston, Virginia 20192
Restoration efforts include changes in agricultural and land development practices, which began in the early 1900s, and the restructuring of the present levee and canal system established to control the flow of water throughout South Florida. Before recommending the use of such efforts, however, scientists must first determine which changes are part of the natural variation in Florida Bay and which resulted from human activities. To answer this question, scientists study both modern samples and deeper piston cores which reveal paleoecologic changes over the past 150-200 years. These two types of cores compliment each other by providing information about the current state of the Bay, changes that have occurred over time, and patterns of change.

Methods of Investigations

three photos of florida bay: a scientist snorkling, before a storm, and a silouette sampling in the waterThe species types and numbers of animal and plant remains present at different depths within the cores provide important clues to the biological, chemical, and physical characteristics of the Bay.

Cores collected from Florida Bay are first sampled for pollen, dinoflagellates and diatoms, washed through a seive stack to remove fine-grained mud, and analyzed for bottom-dwelling, or benthic, organisms, such as mollusks, foraminifera, and ostracodes. These organisms indicate the salinity and substrate types present when the animal was alive. Dinoflagellate cyst analysis indicates the nutrient supply and current while pollen grains reveal the terrestrial vegetation present. By correlating the marine habitat with the terrestrial realm, scientists can learn about regional changes that may have affected the Everglades ecosystem, such as climate and nutrient supply.

Ages for the cores are established using isotopic dating methods, primarily the analysis of the radioisotope lead-210 (210PB). Radiocarbon (14C) dating is used on samples in the parts of the cores where the sediments are too old to be dated with lead-210.

Evidence of Past Change

To date, four piston cores from the northern transitional, eastern, and central portions of Florida Bay have been collected and analyzed. The results appear in "Environmental Impacts on the Southern Florida Coastal Waters: A history of change in Florida Bay," Journal of Coastal Research, special volume 28.

The cores studied included Bob Allen 6A (158cm), Russell Bank 19B (142cm), Pass Key 37, (74cm) and Taylor Creek T24 (86cm). Each core was sampled at 2cm intervals for benthic foraminifers, mollusks, and lead-210 data to provide an age model.

photo of halimeda
Photo of halimeda. [larger version]
An examination of the patterns of benthic faunal distribution seen in the cores from Florida Bay has revealed that changes in salinity and substrate are part of the natural system.

A comparison of the pre-1900 record to the post-1900 record, however, indicates that human development in South Florida has influenced the natural pattern of salinity fluctuations and benthic biota. Prior to 1900, variations in salinity were part of the natural hydrlogic system, with faunal indicators oscillating around 15-20% of the mean. Faunal distributions show subtle shifts around 1910, which may be linked to the construction of the Flagler Railroad. The railroad, built between 1905 and 1912, has significantly impacted Florida Bay by cutting off the flow of water between the Atlantic Ocean and the Gulf of Mexico. Between 1910 and 1940, benthic foraminiferal and molluscan data indicate an increase in salinity. The shifts in salinity become even more drastic after 1940, when the amplitude of the shifts increased from 15-20% around the mean pre-1900 to 40-60% post-1940. After 1940, faunal indicators show a peak in euhaline conditions around 1958, followed by a decline throughout the 1970s and a subsequent rise in the 1980s.

In particular, Bob Allen 6A exhibits this increase in salinity. At present, polyhaline to euhaline conditions exist at these sites.

Vegetation patterns are also an integral component to understanding the ecosystem of Florida Bay. The distribution of epiphytal species reveals that changes in seagrass occur regularly and that, in the past, natural causes have profoundly affected seagrass development.  All four cores show a general increase in seagrass population during the twentieth century. These data imply that seagrass is more abundant in Florida Bay after 1900 than in the past, although additional cores dating back to at least the 1800s would be necessary to substantiate these conclusions. The cores also reveal that macro-algal mats have become more abundant during this century as well. The patterns in salinity and biota identified in these for cores correspond to changes found throughout South Florida, Manatee Bay, and the terrestrial Everglades.

Modern Distribution of Flora and Fauna

photo of a mollusk
[larger image]
In addition to deep sediment cores which reveal environmental changes of the past, 10cm push cores from 26 selected sites in Florida Bay have been collected. Modern sample collection is done twice a year, in February and July, to determine any seasonal variation. These cores record the current ecology of the Bay and also serve as a barometer for variation within the ecosystem.

Like the deeper piston cores, the modern cores are sampled for pollen, dinoflagellates, and diatoms, washed through a seive stack, and examined for mollusk, foraminifera, and ostracode content. Mollusks, including any recognizable fragments, are picked out of the >850 micrometer size fraction while at least 300 foraminifera and ostracodes are picked from the >63 micrometer size fraction. Species abundances are determined by calculating relative percent abundance.

The data obtained from these cores indicate changes in substrate and salinity conditions and the associated fauna and flora. Indicator species for low salinity conditions, seagrass beds, and other parameters of the environment have been identified for use in down-core analysis.

Eleven samples taken in 1995 were dominated by four ubiquitous taxa of mollusks, including Transenella spp.,Cerithium spp., Brachiodontes sp., and Bitium varium. Anomalocardia sp., Parastarte triquetra and a group of terrestrial and freshwater gastropods were also present in significant numbers. Combined, these groups make up 72% of all the specimens examined. Among the pelecypods, Anomalocardia sp., Chione cancellata, and Lima sp. show seasonal variation at five sites, although these patterns may be related to seasonal spawning for the individual species. Otherwise, no seasonal pattern of increasing or decreasing overall abundance could be determined through analysis of the total number of species at each site both in February and July.


Some of the following files are available as PDFs. You will need the free Aobe Acrobat Reader in order to view these files.

OFR 98-522 Diatom Paleoecology Pass Key Core 37,Everglades National Park, Florida Bay (PDF, 602K)

OFR 98-122 Preliminary Paleontologic Report on Core 37, from Pass Key, Everglades National Park, Florida Bay (PDF, 1.2 M)

OFR 97-534 Progress Report on Sediment Analyses at Selected Faunal Monitoring Sites in North-central and Northeastern Florida Bay (PDF, 3.2 M)

OFR 97-460 Preliminary Paleontologic Report on Cores19A &19B, from Russell Bank, Everglades National Park, Florida Bay (PDF, 685 M)

OFR 96-732 Preliminary Report on the Distribution of Modern Fauna and Flora at selected sites in North-central and North-eastern Florida Bay (PDF, 568 K)

OFR 96-543 Preliminary Paleontologic Report on CoreT-24, Little Madeira Bay, Florida (PDF, 460 K)

OFR 95-628 Preliminary Analysis of Down-Core Biotic Assemblages: Bob Allen Keys, Everglades National Park, Florida Bay (PDF, 376 K)

Poster: 200 year history of Florida Bay, Everglades National Park, Florida



U.S. Department of the Interior, U.S. Geological Survey, Center for Coastal Geology
This page is: http://sofia.usgs.gov /flaecohist/floridabay.html
Comments and suggestions? Contact:
Heather Henkel - Webmaster (hhenkel@usgs.gov)
Last updated: January 15, 2013 @ 12:42 PM (HSH)