Novel geophysical and geochemical techniques used to study submarine groundwater discharge in Biscayne Bay, Florida

INTRODUCTION

Submarine groundwater discharge (SGD) is a problem of major proportions on a world-wide scale. The ubiquitous nature of SGD along varied coastlines and its importance to coastal water and geochemical budgets have recently been thrust into the global spotlight [(Moore, 1996, and colleagues (cf. Burnett et al., 2003, and references therein)]. For example, the discharge of nutrient-enriched groundwater into coastal waters may cause nutrient imbalances that can lead to eutrophication (Bokuniewicz, 1980; Giblin and Gaines, 1990) or near-shore micro-organism blooms (Valiela and D’Elia, 1990; Laroche et al., 1997). Similarly, SGD can also directly affect threatened coastal freshwater resources and impact fragile coastal ecosystems, such as coral reefs.

Recently, much effort has been devoted to developing and adapting new tracer techniques and methods for the identification and quantification of SGD. As the discharge of coastal groundwater most often occurs as diffuse seepage rather than through a single vent feature (Swarzenski et al., 2001), assessing SGD has remained difficult for both oceanographers and hydrologists alike. Burnett and colleagues have developed a systematic approach to investigate SGD by using a combination of both physical seepage measurements and a suite of naturally occurring isotopic tracers in the U/Th decay chain – 222Rn and 223,224,226,228Ra. Manheim et al. (2002) further extended SGD investigations by adapting geophysical resistivity techniques to examine fine-scale change in conductivity fields within coastal sediments. Such streaming resistivity profiling has been successfully applied to identify sites of SGD (Belaval et al., 2003), as well as the dynamic position of the fresh water/saltwater interface.

In this paper, we report on the use of streaming resistivity profiling, continuous water-column 222Rn mapping, and the deployment of electromagnetic seepage meters to identify and quantify submarine groundwater dis-
charge at select sites in Biscayne Bay, FL. Such data support and validate variable-density modeling results, and provide insight into the mechanisms and scales of SGD in Biscayne Bay.

BISCAYNE BAY

Biscayne Bay is an estuarine lagoon that is ~61 km long and 18 km wide, located just south of the Miami-Dade County metropolitan area (Figure 1). Several rivers and canals on the western shore discharge surface water into the bay. On the seaward side of Biscayne Bay, coral reef structures make up the northern extent of the Florida reef tract. Most regions of the bay have been variably impacted by agricultural, municipal, and industrial activities. For almost 100 years, the natural hydrogeologic regime adjacent to the bay has been altered through an extensive network of dredged water-ways and drainage canals (Parker, 1955). Numerous retention ponds and lakes store water and modulate surface runoff. Infiltration of organic and inorganic pollutants into the groundwater from such storage sites is likely enhanced by the highly porous and transmissive Biscayne Aquifer. Submarine groundwater discharge into the bay has been prominently observed (Kohout, 1960) and more recently modeled (Langevin, 2001, 2003). Noted declines in adjacent offshore coral reef health and overall ecological stress may be linked to alterations to the groundwater and surface water flow paths, groundwater and surface water pollution, or other large-scale factors such as sea-level fluctuations.

A ~75 km survey of Biscayne Bay (Figure 2) for surface water 222Rn activities and streaming resistivity profiling was conducted during June 7-9, 2004. Simultaneous GPS positions, depth soundings, salinity, and temperature were obtained using a Lowrance echo sounder and an In Situ profiler, respectively.

RADON-222

Radon-222, an inert gas produced by the decay of 226Ra in sediments, is typically present in groundwater at much greater activities than in surface waters. Its short half-life of 3.8

Figure 2. Operational configuration of the continuous 222Rn and streaming resistivity equipment deployed on a 25-ft-long pontoon boat.
the receiver injects current in the first two electrodes and then measures eight voltage potentials in the trailing electrode pairs. Streaming resistivity data were collected once every ~3 sec. Post-processing of the resistivity data involves several inverse modeling iterations.

In addition, continuous surface salinity, pH, temperature, and depth soundings were recorded to support post-processing of the resistivity data. Interpretations of the streaming resistivity data confirm enhanced freshened subsurface water masses at sites of increased 222Rn activities (Figure 4).

ELECTROMAGNETIC SEEPAGE METER DEPLOYMENTS

The USGS has been developing and utilizing electromagnetic (EM) seepage meters to study groundwater/surface exchange (Rosenberry and Morin, 2004) and submarine groundwater discharge into coastal waters (Swarzenski et al., 2004). Such EM seepage meters were deployed at a site by Cutler Ridge in Biscayne Bay during March 2004. Electromagnetic seepage-rate data collected at this site show distinct and continuous discharge of groundwater. The rate of exchange across the sediment/water interface ranged from 10 to 50 cm day\(^{-1}\), with an average of 23.2 cm day\(^{-1}\) (Figure 5). It appears that tidal forcing at least partially controls the pattern of submarine groundwater discharge. These data were collected during the south Florida dry season and therefore such seepage rates would most likely increase during periods of higher rainfall (July-November). The average seepage rate (23.2 cm day\(^{-1}\)) observed in this study corresponds very closely to modeled fluxes of groundwater into the bay (Langevin, 2001, 2003).

SUMMARY

Near-continuous excess 222Rn measurements in the surface waters of Biscayne Bay show some striking anomalies that suggest enhanced submarine groundwater discharge
at discrete sites within the bay. Interestingly, at Cutler Ridge – the well-known site of Kohout’s work on freshwater/saltwater dynamics – water-column 222Rn activities are highest and indicate the most active submarine groundwater discharge. This is also supported by the streaming resistivity profiling data, which indicate greater freshened water masses in this region. Such data confirm the utility of these two techniques in identifying sites of SGD and provide direct evidence in support of ongoing modeling efforts on freshwater/saltwater interface processes in Biscayne Bay. The electromagnetic seepage-meter data provide the first continuous record of exchange rates across the sediment/water interface at Cutler Ridge and similarly support recent modeling predictions.

The use of trade, firm and brand names is for identification purposes only and does not constitute endorsement by the U.S. Government.

References

Valiela, I. and D’Elia, C., 1990, Groundwater inputs to coastal waters. Special Volume, Biogeochemistry, 10, 328.

Peter Swarzenski1, Bill Burnett2, Chris Reich1, Henrieta Dulaiova3, Richard Peterson1 and Jeff Meunier2
1USGS, St. Petersburg, FL
2Florida State University, Tallahassee, FL
3Express, Reston, VA

For more information, please contact:

Peter Swarzenski
600 4th Street South
St. Petersburg, FL 33701
phone: 727-803-8747 x3072
dox: 727-803-2030
pswarzen@usgs.gov