Home Archived February 20, 2019

Link to USGS home page
125 years of science for America 1879-2004
Sound Waves Monthly Newsletter - Coastal Science and Research News from Across the USGS
Home || Sections: Spotlight on Sandy | Fieldwork | Research | Outreach | Meetings | Awards | Staff & Center News | Publications || Archives


Could It Happen Here? Tsunamis That Have Struck U.S. Coastlines

in this issue:
 previous story | next story

Photo showing damage in Hawai'i from a tsunami generated by a 1946 earthquake in the Aleutian Islands, AK.
Above: Damage in Hawai'i from a tsunami generated by a 1946 earthquake in the Aleutian Islands, AK, included wreckage of a political-party clubhouse, pictured here, on Kamehameha Avenue, Hilo, HI. Every house on the main street facing Hilo Bay was washed across the street and smashed against the buildings on the other side. Houses were overturned, railroads ripped from their roadbeds, coastal highways buried, and beaches washed away. The waters off the island were dotted with floating houses, debris, and people. Property damage in Hawaii was $255 million in today's dollars. Photograph by U.S. Army Corps of Engineers (from the National Geophysical Data Center). [larger version]

Damage from a tsunami generated by the magnitude 9.2 earthquake of March 27, 1964, in Prince William Sound, Alaska.
Above: Damage from a tsunami generated by the magnitude 9.2 earthquake of March 27, 1964, in Prince William Sound, Alaska. In this view of the north end of Resurrection Bay at Seward, AK, about 75 km from the epicenter, a beached ship, a demolished Texaco chemical truck, and a torn-up dock strewn with logs and scrap metal are visible. At Seward, a community of about 2,300, a section of the waterfront slid into Resurrection Bay. Waves spread in all directions, destroying the Alaska railroad docks, washing out railroad and highway bridges, and piling railroad rolling stock into giant windrows of wreckage. The waves spread flaming petroleum over the waterfront, igniting the rolling stock, the electrical-generation plant, and some residences. Resurrection Bay sustained $14.6 million in damage, and 11 fatalities occurred in the Seward area. Photograph by U.S. Department of the Interior (from the National Geophysical Data Center). [larger version]

Copper engraving shows a local tsunami destroying wharves on the shore and disturbing water in the harbor, where many ships sank.
Above: Lisbon, Portugal, during the great earthquake of November 1, 1755. This copper engraving, made that year, shows a local tsunami destroying wharves on the shore and disturbing water in the harbor, where many ships sank. Teletsunamis were reported in Newfoundland (Canada) and islands in the Caribbean. (Image from Wikipedia.) [larger version]

Soon after the destructive tsunami in the Indian Ocean on December 26, 2004, many people asked, could such a tsunami happen in the United States? Information about tsunamis that have struck U.S. coasts in the past, summarized briefly here and in more detail on the Can it happen here in the United States? Web page, provide a foundation for estimating tsunami likelihood in the future.

What Is a Tsunami?

A tsunami is a set of powerful ocean waves most commonly caused by a large earthquake or landslide that occurs near or under the ocean. Scientists do not use the term "tidal wave" because these waves are not caused by tides. Tsunami waves are unlike typical ocean waves generated by wind and storms. When tsunami waves approach shore, they behave like a very fast-moving tide that extends far inland. A rule of thumb is that if you see the tsunami, it is already too late to outrun it. Most tsunamis do not "break" like the curling, wind-generated waves popular with surfers. Even "small" tsunamis (for example, 6 ft high) are associated with extremely strong currents, capable of knocking people off their feet. As with many natural phenomena, tsunamis can range in size from micro-tsunamis detectable only by sensitive instruments on the ocean floor to mega-tsunamis that can affect the coastlines of entire oceans, such as the Indian Ocean tsunami of 2004.

Because of complex interactions with the coast, tsunami waves can persist for many hours. If you hear a tsunami warning or if you feel strong shaking at the coast or observe highly unusual wave activity (for example, the sea withdrawing far from shore), it is important to move to high ground and stay away from the coast until wave activity has subsided (generally several hours to days).

For more general information on tsunamis and what to do during a tsunami warning, please visit the Web sites sponsored by the Federal Emergency Management Agency (FEMA, URL http://www.fema.gov/areyouready/tsunamis.shtm), the National Weather Service (URL http://www.nws.noaa.gov/om/brochures/tsunami.htm), State agencies (links at URL http://www.wsspc.org/tsunami/tsunamilinks.html), the National Oceanic and Atmospheric Administration (NOAA, URL http://www.pmel.noaa.gov/tsunami/), and the U.S. Geological Survey (USGS, URL http://walrus.wr.usgs.gov/tsunami/). For tips from the stories of people who have survived tsunamis, please see USGS Circular 1187, "Surviving a Tsunami—Lessons from Chile, Hawaii, and Japan," (PDF files in English and Spanish can be downloaded from this site).

Data We Can Use to Answer the Question "Could It Happen Here?"

Three primary sources of information can be used to answer the question "Could it happen here?": (1) tsunami catalogs of historical events, (2) the age of geologic deposits left by great earthquakes and tsunamis (see related Sound Waves article "Group Aims to Distinguish Tsunami Deposits from Large-Storm Deposits in the Geologic Record", and (3) computer simulations of tsunamis from potential great earthquakes and landslides around the world. This article focuses on the first source, historical information, taken mainly from the worldwide catalog of historical tsunamis maintained by NOAA's National Geophysical Data Center (NGDC). This catalog includes two types of measurements: runup observations from eyewitness accounts, and wave-height readings from tide-gauge stations, most often located in harbors. The term "runup" refers to the vertical height a wave reaches above sea level as it washes ashore, "wave height" to the vertical measurement of the wave before it reaches shore, and "inundation distance" to the horizontal distance a tsunami reaches landward from the shoreline. More information on tsunami measurements can be found on the NGDC Tsunami Introduction Web page.


Hawai'i has a long recorded history of tsunamis—both "teletsunamis" (also called "far-field tsunamis") from earthquakes around the Pacific rim, and "local tsunamis" from earthquakes and landslides near Hawai'i. The Pacific Disaster Center reports that tsunamis have accounted for more lost lives in Hawai'i than the total of all other local disasters. In the 20th century, an estimated 221 people were killed by tsunamis on the islands of Hawai'i. One of the largest and most devastating tsunamis that Hawai'i has experienced was a teletsunami in 1946 from an earthquake along the Aleutian subduction zone. Runup heights reached a maximum of 33 to 55 ft and 159 people were killed. Damage was more than $26 million ($255 million in today's dollars). Other important teletsunamis include one from the 1960 magnitude 9.5 earthquake in southern Chile and one from the 1964 magnitude 9.2 earthquake in the Gulf of Alaska. The May 22, 1960, Chile earthquake generated a 35-ft-high wave, causing 61 deaths and $23 million damage (about $150 million in today's dollars). Hawai'i has also been hit by local tsunamis, primarily from earthquakes and large-scale subsidence along the south flank of Kilauea.


Because Alaska, including the Aleutian Islands, is bordered on the south by a major subduction zone capable of generating large earthquakes, Alaska has sustained many damaging tsunamis. By far, the one that stands out is the tsunami generated by the 1964 magnitude 9.2 earthquake in the Gulf of Alaska. Not only was a Pacific-wide tsunami generated by this great earthquake, but landslides in coastal fiords, such as Port Valdez, also generated localized, extremely damaging waves. The 1964 tsunami caused damage and loss of life across the Pacific. The West Coast & Alaska Tsunami Warning Center in Palmer, AK, indicates that the 1964 tsunami was the most disastrous tsunami to hit the U.S. west coast, causing many fatalities and financial losses.

U.S. West Coast

The historical record of tsunamis along the U.S. west coast consists mainly of teletsunamis generated by large earthquakes around the Pacific Rim. Of the teletsunamis that have struck the West Coast, the 1964 Gulf of Alaska tsunami caused the most extensive damage, particularly in Crescent City, CA, where at least 10 deaths occurred. Potentially tsunamigenic fault structures exist locally offshore the U.S. west coast, most notably the Cascadia subduction zone—an offshore fault system about 1,200 km (750 mi) long that extends from northern California to southern Canada and accommodates motion between the Pacific and North American tectonic plates at a rate of about 40 mm/yr (1.6 in./yr). This subduction zone is believed to have most recently ruptured in a magnitude 9.0 earthquake in 1700; the resulting tsunami was recorded in historical accounts in northern Japan. Geologic evidence of submerged vegetation indicates that large or great earthquakes (magnitude 8 to 9) have occurred on average every 500 years along this zone. Great ruptures along this subduction zone would most likely cause local and possibly oceanwide tsunamis that could affect the Western United States.

U.S. Gulf Coast

In historical times, tsunami waves recorded along the Gulf Coast have all been less than 1 m high. Those reported from the 1964 Gulf of Alaska earthquake as felt in Louisiana and Texas are technically termed seiches—oscillations of a body of water typically caused by atmospheric disturbances but in this case caused by ground motion from the earthquake. Seiches can also occur in lakes from earthquake movements.

U.S. East Coast

Because the only major subduction zones in the Atlantic Ocean are along the Caribbean Sea, tsunamis have been relatively infrequent here in comparison with the Pacific Ocean. The most famous Atlantic tsunami was the 1755 Lisbon tsunami, generated by an earthquake on a fault offshore Portugal. Teletsunamis from that earthquake were reported in Newfoundland (Canada) and islands in the Caribbean Sea. The most noteworthy local tsunami in North America resulted from the 1929 magnitude 7.3 Grand Banks earthquake near Newfoundland. In this complex event, most, if not all, of the tsunami energy may have been triggered by a submarine landslide. The maximum tsunami runup was 2 to 7 m, which was concentrated on the coast of Newfoundland, although it was recorded as far south as South Carolina. A couple of tsunamis reported from Caribbean earthquakes had runups less than 1 m.

Puerto Rico and the U.S. Virgin Islands

Puerto Rico and the U.S. Virgin Islands are more susceptible than other places in the Eastern United States, because a subduction zone capable of generating large earthquakes lies beneath the Caribbean Sea. Tsunamis have struck Puerto Rico and the Virgin Islands more than six times in recorded history. The tsunami with the greatest amount of damage in Puerto Rico was generated in 1918 by an earthquake off the Mona Passage, east of the island. With a maximum runup of 6 m, the tsunami itself killed 40 people; an additional 76 people were killed by the earthquake. The Caribbean region as a whole has a history of earthquakes that have caused damaging tsunamis. (See Sound Waves article "Workshop Addresses Tsunami Hazard to Puerto Rico, the Virgin Islands, and Other Caribbean Islands".)

Other U.S. Territories

Other territories of the United States are adjacent to large subduction zones. Guam and the Marianas Islands are next to the Marianas Trench. American Samoa is affected by earthquakes about 100 mi away along the Tonga-Kermadec Trench.


These historical reports are based largely on the tsunami catalog maintained by the NGDC. In addition we have used information from the Pacific Tsunami Warning Center and the Pacific Disaster Center.

Related Sound Waves Stories
Indian Ocean Earthquake Triggers Deadly Tsunami
Dec. 2004 / Jan. 2005
Workshop Addresses Tsunami Hazard to Puerto Rico, the Virgin Islands, and Other Caribbean Islands
June 2004
Group Aims to Distinguish Tsunami Deposits from Large-Storm Deposits in the Geologic Record
October 2002

Related Web Sites
Can it happen here in the United States?
U.S. Geological Survey (USGS)
Tsunamis and Earthquakes
U.S. Geological Survey (USGS)
Surviving a Tsunami—Lessons from Chile, Hawaii, and Japan - USGS Circular 1187
U.S. Geological Survey (USGS)
Are You Ready? Tsunamis
Federal Emergency Management Agency (FEMA)
Tsunami: the Great Waves
National Weather Service
WSSPC Tsunami Web Links
Western States Seismic Policy Council
PMEL Tsunami Research Program
National Oceanic and Atmospheric Administration (NOAA)
World-Wide Tsunamis Introduction
National Geophysical Data Center (NGDC)
National Geophysical Data Center (NGDC)
National Oceanic and Atmospheric Administration (NOAA)
Pacific Disaster Center
The Great Alaskan Earthquake & Tsunamis of 1964
West Coast & Alaska Tsunami Warning Center
West Coast & Alaska Tsunami Warning Center
National Oceanic and Atmospheric Administration (NOAA)

in this issue:
 previous story | next story


Mailing List:

print this issue print this issue

in this issue: Fieldwork cover story:
Indian Ocean Tsunami

Could a Tsunami Happen Here?

Deltaic Habitats in Puget Sound

Invasive Sea Squirt Flourishing

How Sea Floor Sediment Moves

Research Submarine Canyons Named for Marine Geologists

Outreach Appreciation Day for Congressman Young

Students Learn About Coastal and Marine Science

Hurricanes Focus Attention on USGS Research

College Students Visit USGS Center in St. Petersburg

Scientists Participate in Great-American Teach-In

Scientists Interviewed About Invasive Sea Squirt


CCWS Open House

Scientists Interviewed for HBO Program

Meetings International Symposium on Coastal Issues

Jeff Williams Reviews Storm Surge Model

Gulf and Caribbean Fisheries Institutes Conference

Suwannee River Basin and Estuary Integrated Science Workshop

Staff & Center News Regional Executive Visits FISC Office

Jingping Xu Joins Western Coastal and Marine Geology Team

Publications Special Oceanography Issue Includes Sediment Dynamics Article

Dec. / Jan. Publications List

FirstGov.gov U. S. Department of the Interior | U.S. Geological Survey
Sound Waves Monthly Newsletter

email Feedback | USGS privacy statement | Disclaimer | Accessibility

This page is http://soundwaves.usgs.gov/2005/01/fieldwork2.html
Updated December 02, 2016 @ 12:09 PM (JSS)