HABITAT SUITABILITY INDEX MODELS: SLOUGH DARTER
The Biological Services Program was established within the U.S. Fish and Wildlife Service to supply scientific information and methodologies on key environmental issues that impact fish and wildlife resources and their supporting ecosystems. The mission of the program is as follows:

- To strengthen the Fish and Wildlife Service in its role as a primary source of information on national fish and wildlife resources, particularly in respect to environmental impact assessment.
- To gather, analyze, and present information that will aid decisionmakers in the identification and resolution of problems associated with major changes in land and water use.
- To provide better ecological information and evaluation for Department of the Interior development programs, such as those relating to energy development.

Information developed by the Biological Services Program is intended for use in the planning and decisionmaking process to prevent or minimize the impact of development on fish and wildlife. Research activities and technical assistance services are based on an analysis of the issues, a determination of the decisionmakers involved and their information needs, and an evaluation of the state of the art to identify information gaps and to determine priorities. This is a strategy that will ensure that the products produced and disseminated are timely and useful.

Projects have been initiated in the following areas: coal extraction and conversion; power plants; geothermal, mineral and oil shale development; water resource analysis, including stream alterations and western water allocation; coastal ecosystems and Outer Continental Shelf development; and systems inventory, including National Wetland Inventory, habitat classification and analysis, and information transfer.

The Biological Services Program consists of the Office of Biological Services in Washington, D.C., which is responsible for overall planning and management; National Teams, which provide the Program's central scientific and technical expertise and arrange for contracting biological services studies with states, universities, consulting firms, and others; Regional Staffs, who provide a link to problems at the operating level; and staffs at certain Fish and Wildlife Service research facilities, who conduct in-house research studies.
HABITAT SUITABILITY INDEX MODELS: SLOUGH DARTER

by

Elizabeth A. Edwards
Habitat Evaluation Procedures Group
Western Energy and Land Use Team
U.S. Fish and Wildlife Service
Drake Creekside Building One
2625 Redwing Road
Fort Collins, Colorado 80526

Mary Bacteller
and
O. Eugene Maughan
Oklahoma Cooperative Fishery Research Unit
Oklahoma State University
Stillwater, Oklahoma 74074

Western Energy and Land Use Team
Office of Biological Services
Fish and Wildlife Service
U.S. Department of the Interior
Washington, D.C. 20240
This report should be cited as:

PREFACE

The habitat use information and Habitat Suitability Index (HSI) models presented in this document are an aid for impact assessment and habitat management activities. Literature concerning a species' habitat requirements and preferences is reviewed and then synthesized into HSI models, which are scaled to produce an index between 0 (unsuitable habitat) and 1 (optimal habitat). Assumptions used to transform habitat use information into these mathematical models are noted, and guidelines for model application are described. Any models found in the literature which may also be used to calculate an HSI are cited, and simplified HSI models, based on what the authors believe to be the most important habitat characteristics for this species, are presented.

Use of the models presented in this publication for impact assessment requires the setting of clear study objectives and may require modification of the models to meet those objectives. Methods for reducing model complexity and recommended measurement techniques for model variables are presented in Appendix A.

The HSI models presented herein are complex hypotheses of species-habitat relationships, not statements of proven cause and effect relationships. Results of model performance tests, when available, are referenced; however, models that have demonstrated reliability in specific situations may prove unreliable in others. For this reason, the FWS encourages model users to convey comments and suggestions that may help us increase the utility and effectiveness of this habitat-based approach to fish and wildlife planning. Please send comments to:

Habitat Evaluation Procedures Group
Western Energy and Land Use Team
U.S. Fish and Wildlife Service
2625 Redwing Road
Ft. Collins, CO 80526
| CONTENTS |
|------------------|---|
| PREFACE | iii |
| ACKNOWLEDGEMENTS | vi |
| HABITAT USE INFORMATION | 1 |
| General | 1 |
| Age, Growth, and Food | 1 |
| Reproduction | 1 |
| Specific Habitat Requirements | 1 |
| HABITAT SUITABILITY INDEX (HSI) MODELS | 3 |
| Model Applicability | 3 |
| Model Description - Riverine | 3 |
| Model Description - Lacustrine | 4 |
| Suitability Index (SI) Graphs for Model Variables | 5 |
| Riverine Model | 8 |
| Lacustrine Model | 8 |
| Interpreting Model Outputs | 9 |
| ADDITIONAL HABITAT MODELS | 12 |
| REFERENCES CITED | 12 |
ACKNOWLEDGEMENTS

We are indebted to Katie Twomey for development of an earlier literature review and initial work on suitability index graphs. Lawrence Page reviewed an earlier copy of the manuscript and Carol Thompson provided information on slough darter capture sites. Their contributions are gratefully acknowledged, but the authors accept full responsibility for the contents of the document. Word processing was provided by Dora Ibarra and Carolyn Gutzow. The cover of this document was illustrated by Jennifer Shoemaker.
SLOUGH DARTER (Etheostoma gracile)

HABITAT USE INFORMATION

General

The native range of the slough darter (Etheostoma gracile) extends from western Alabama (Smith-Vaniz 1968) to central Texas and northward in the lowland areas of the former Mississippi Embayment and the Interior Low Plateau to central Illinois (Collette 1962) and southwestern Indiana (Gerking 1945). Its distribution also includes southeast Kansas (Metcalf 1959; Cross 1967) and northeast Oklahoma (Blair 1959). Natural hybridization with the blackside darter (Percina maculata) has been recorded (Page 1976).

Age, Growth, and Food

Slough darters mature at age I and reach a maximum standard length of 48 mm at age IV (Braasch and Smith 1967). Slough darters are primarily bottom feeders and feed throughout the year on insect larvae, microcrustaceans, and some snails (Braasch and Smith 1967). Fry eat diatoms and other plankton at first and, subsequently, insects and microcrustaceans (Braasch and Smith 1967).

Reproduction

The spawning season for slough darters extends from March to early June (Hubbs and Cannon 1935; Collette 1962; Braasch and Smith 1967; Cross 1967). The female slough darter lays eggs singly on objects, such as twigs or leaf petioles. In the laboratory, females spawned only once, and no postspawning care of the eggs was observed. Incubation was 5 days in the laboratory at 22.8°C, the temperature of the stream where the darters were collected (Braasch and Smith 1967). Spawning has not been observed in the field because of turbid conditions.

Specific Habitat Requirements

Adult. Slough darters are typically found in pools and oxbows of lowland streams (Gerking 1945; Cross 1955; Cook 1959; Braasch and Smith 1967; Cross 1967), in backwaters (Linder 1955; Collette 1962), bayous (Blatchley 1938; Hancock and Sublette 1958), sloughs (Cook 1959; Braasch and Smith 1967), swamps (Blatchley 1938; Gerking 1945; Collette 1962), and ponds or lakes (Cook 1959; Collette 1962). Optimal habitat for slough darters can be characterized as warm, turbid waters (Linder 1955; Wallen 1958; Braasch and Smith 1967; Pflieger 1975) with little or no flow (Gerking 1945; Cook 1959; Collette 1962; Cross 1967; Pflieger 1975), mud or silt bottoms (Hancock and Sublette 1958; Wallen 1958; Collette 1962; Braasch and Smith 1967), and some vegetation or debris (Braasch and Smith 1967). Vegetation may be used for cover and as a spawning substrate (Wallen 1958; Blair 1959; Braasch and Smith 1967; Cross 1967). However, Collette (1962) reported that only about half of the areas where slough darters were collected had aquatic vegetation, and the amount was usually slight to moderate. The most consistent habitat characteristic where
slough darters were collected was a mud or silt bottom (Collette 1962; Braasch and Smith 1967). Occasionally they were found over bedrock or clay (Wallen 1958; Collette 1962) and, somewhat more frequently, over sand, detritus, or gravel (Collette 1962). In rivers and streams, adults may overwinter in deep sand or mud bottomed pools (Braasch and Smith 1967).

Most slough darters were collected in waters with gradients of less than 0.5 m/km; they avoided areas with gradients averaging 3.5 m/km or more (Collette 1962). Within these lowland areas, pools are occupied almost exclusively (Hancock and Sublette 1958; Braasch and Smith 1967; Cross 1967). Thus, it is assumed that a high pool to riffle ratio is optimum. Sluggish (Gerking 1945; Hancock and Sublette 1958; Blair 1959) or quiet (< 10 cm/sec) (Wallen 1958; Braasch and Smith 1967) water is preferred. Slough darters are not found in upstream areas with current-swept channels (Collette 1962; Cross 1967).

In addition to current velocity, turbidity seems to be an important limiting factor (Collette 1962). Slough darters typically inhabit moderate (Gerking 1945; Linder 1955; Wallen 1958; Blair 1959; Collette 1962; Pfieger 1975) to highly turbid waters (Braasch and Smith 1967), although they may be found in clear or slightly turbid waters (Wallen 1958). Although upper turbidity limits are not known, it is assumed that very high turbidities adversely affect the population by limiting food production. Turbidity also provides cover for all life stages.

The pH tolerances of the slough darter have not been recorded. However, the species has been captured in a Louisiana bayou at a pH level of 6.7-7.2 (Hancock and Sublette 1958). A pH range of 6.5-8.5 is considered to be essential for good production of freshwater fish (Stroud 1967; U.S. Environmental Protection Agency 1972); a range of 5.5-9.5 provides only minimum protection for survival of freshwater fish (U.S. Environmental Protection Agency 1972).

There is little available data on either temperature or dissolved oxygen requirements of slough darters. The maximum temperature in a bayou where slough darters were collected one summer in Louisiana was 26.5° C (Hancock and Sublette 1958). Slough darters are subject to oxygen deficit kills when dissolved oxygen (D.O.) levels become too low (Braasch and Smith 1967). In a bayou having slough darters, the minimum D.O. concentration was 1.7 mg/l (Hancock and Sublette 1958). A D.O. value of 5.0 mg/l is an adequate lower limit to sustain optimum growth and survival of freshwater fish (Stroud 1967).

Embryo. Eggs hatch after 5 days at 22.8° C (Braasch and Smith 1967), and optimum temperature for embryos is considered similar.

Fry-Juvenile. No specific habitat requirement data for fry and juvenile slough darters are reported in the literature. However, since fry were caught in the same area as adults (Braasch and Smith 1967), we assume that the habitat requirements of fry and juveniles are the same or similar as for the adults.
HABITAT SUITABILITY INDEX (HSI) MODELS

Model Applicability

Geographic area. The model is applicable throughout the native range of the slough darter in North America. The standard of comparison for each individual variable suitability index is the optimum value of the variable that occurs anywhere within the range of the species.

Season. The model provides a rating for a water body based on its ability to support a reproducing population of slough darters through all seasons of the year.

Cover types. The model is applicable in riverine, palustrine, and lacustrine habitats as described by Cowardin et al. (1979).

Minimum habitat area. Minimum habitat area is defined as the minimum area of contiguous suitable habitat that is required for a species to live and reproduce. No attempt has been made to establish a minimum habitat size for slough darters.

Verification level. The acceptance goal of the slough darter model is to produce an index between 0 and 1 which has a positive relationship to habitat carrying capacity for slough darters. In order to verify that the model output was acceptable, HSI's were calculated from sample data sets. These sample data sets and their relationship to model verification are discussed in greater detail later.

Model Description - Riverine

Slough darter habitat quality analysis is based on basic components consisting of food, cover, water quality, and other various habitat requirements. Variables that have been shown to impact growth, survival, abundance, or other measures of well-being of slough darters are placed in the appropriate component (Figure 1).

Food-cover component. Information is lacking on the specific habitat requirements for food and cover in the slough darter. It is assumed that turbidity (V_6) is important because very high turbidities can limit the food supply. Turbidity can also provide cover for all life stages of the fish. Percent pools (V_2) is included because slough darters require pool habitat in a riverine habitat, and the food and cover requirements will be met in pool areas.

Water quality component. Dissolved oxygen (V_1) and average water temperature (V_5) are included because these parameters can affect survival, development, and growth of the species. Turbidity (V_6) is included because it is an important habitat characteristic limiting slough darters. pH (V_8) is an important water quality parameter that can affect survival of freshwater fish.
Other component. The variables in this component are those which aid in describing habitat suitability for the slough darter, yet are not specifically related to life requisite components already presented. Stream gradient \((V_3) \) is included because slough darters are restricted to low gradient streams.

Habitat Variables

- Turbidity \((V_6) \)
- % pools \((V_2) \)
- Dissolved oxygen \((V_1) \)
- Average water temperature \((V_5) \)
- Turbidity \((V_6) \)
- pH \((V_8) \)
- Stream gradient \((V_3) \)
- Substrate type \((V_4) \)
- Average velocity \((V_7) \)

Life Requisites

- Food-cover \((C_{F-C}) \)
- Water quality \((C_{WQ}) \)
- HSI
- Other \((C_{OT}) \)

Figure 1. Tree diagram illustrating relationship of habitat variables and life requisites in the riverine model for the slough darter. The lacustrine model for this species includes the water quality component only.

Substrate type \((V_4) \) is important because it is the most consistent habitat characteristic where slough darters are found. Average velocity \((V_7) \) is included because slough darter distribution is limited by current velocity.

Model Description - Lacustrine

Because most information is limited to slough darter riverine habitats, the slough darter lacustrine model describes water quality only.

Water quality component. Refer to the riverine water quality component.
Suitability Index (SI) Graphs for Model Variables

This section contains suitability index graphs for the eight variables described above and equations for combining selected variable indices into a species HSI using the component approach. Variables may pertain to either a riverine (R) habitat, a lacustrine (L) habitat, or both.

<table>
<thead>
<tr>
<th>Habitat</th>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R, L</td>
<td>(V_1)</td>
<td>Minimum dissolved oxygen level during the summer.</td>
</tr>
<tr>
<td>R</td>
<td>(V_2)</td>
<td>Percent pools during average summer flow.</td>
</tr>
</tbody>
</table>

![Suitability Graph](image)
Average stream gradient within the representative reach.

Dominant substrate type of a stream bottom.

A) > 75% substrate mud or silt; some sand and/or detritus.
B) > 50% sand and/or detritus; some mud, silt, or gravel.
C) > 75% gravel, sand, or detritus.
D) Mostly clay and/or bedrock.

Average water temperature, spring to fall.
R,L \quad (V_6) \quad \text{Maximum monthly average turbidity.}

R \quad (V_7) \quad \text{Average velocity at 0.6 m depth during average summer flow.}

R,L \quad (V_8) \quad \text{pH levels during the year.}
Riverine Model

These equations utilize the life requisite approach and consist of three components: food-cover, water quality, and other.

Food-Cover (C_{F-C})

\[C_{F-C} = \frac{V_2 + V_6}{2} \]

Water Quality (C_{WQ})

\[C_{WQ} = (V_1^2 \times V_5^2 \times V_6^2 \times V_8)^{1/7}, \text{ or} \]

if V_1, V_5, or V_6 is ≤ 0.4, C_{WQ} equals the lowest of the following: V_1, V_5, V_6, or the above equation. If any variable equals 0, C_{WQ} equals 0.

Other (C_{OT})

\[C_{OT} = (V_3 \times V_4^2 \times V_7^2)^{1/5}, \text{ or} \]

if any of these variables is ≤ 0.4, C_{OT} equals the lowest of the following: V_3, V_4, V_7, or the above equation. If any variable equals 0, C_{OT} equals 0.

HSI determination

\[HSI = (C_{F-C} \times C_{WQ} \times C_{OT}^2)^{1/4}, \text{ or} \]

if C_{OT} or C_{WQ} is ≤ 0.4, then the HSI equals the lowest of C_{OT}, C_{WQ}, or the above equation.

Lacustrine Model

This equation utilizes the life requisite approach and consists of one component: water quality.
\[C_{WQ} = \left(V_1^2 \times V_5^2 \times V_6^2 \times V_8^2 \right)^{1/7}, \quad \text{or} \]

if \(V_1, V_5, \) or \(V_6 \) is \(\leq 0.4 \), \(C_{WQ} \) equals the lowest of the following: \(V_1, V_5, V_6, \) or the above equation.

HSI Determination

\[HSI = C_{WQ} \]

If any variable equals 0, then \(C_{WQ} = 0 = HSI \).

Sources of data and assumptions made in developing the suitability indices are presented in Table 1.

Sample data sets from which HSI's have been generated using the riverine HSI equation are given in Table 2. Similar data sets using the lacustrine HSI equation are given in Table 3. The data sets are not actual field measurements, but represent combinations that could occur in a riverine or lacustrine habitat. The HSI's calculated from the data reflect what we think carrying capacity trends would be in riverine and lacustrine habitats with the listed characteristics. Thus, the models meet the acceptance goal of producing an index between 0 and 1 which is believed to have a positive relationship to the habitat carrying capacity of slough darters.

Interpreting Model Outputs

The slough darter HSI determined by use of these models will not necessarily represent the population of slough darters in the study area. This may be due to the fact that these models rely on habitat-based factors, and other factors may more significantly affect the population level of slough darters in an area. If the model is a good representation of slough darter riverine or lacustrine habitat, then, in areas where slough darter population levels are due primarily to habitat related factors, the model should be positively correlated with long-term average population levels. However, this has not been tested. The proper interpretation of the HSI is one of comparison. If two habitats have different HSI's, the one with the higher HSI should have the potential to support more slough darters than the one with the lower HSI, given that the model assumptions have not been violated.
Table 1. Data sources and assumptions for slough darter suitability indices.

<table>
<thead>
<tr>
<th>Variable and source</th>
<th>Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_1 Hancock and Sublette 1958 Braasch and Smith 1967 Stroud 1967</td>
<td>D.O. levels which promote maximum growth and survival are optimum. Levels that are tolerated, but are not adequate for good growth are suboptimum. D.O. levels that may be lethal are unsuitable.</td>
</tr>
<tr>
<td>V_2 Hancock and Sublette 1958 Braasch and Smith 1967 Cross 1967</td>
<td>Since slough darters are found almost exclusively in pools, it is assumed that a high pool to riffle ratio would characterize optimum habitat.</td>
</tr>
<tr>
<td>V_3 Collette 1962</td>
<td>Stream gradients where slough darters are most often found are optimum. Gradients where the species is not found are unsuitable.</td>
</tr>
<tr>
<td>V_4 Wallen 1958 Collette 1962</td>
<td>The substrate type where slough darters are most often found is optimum. Substrate types where they are collected less often are suboptimum.</td>
</tr>
<tr>
<td>V_5 Hancock and Sublette 1958</td>
<td>Temperatures where slough darters are collected are assumed to be optimum.</td>
</tr>
<tr>
<td>V_6 Gerking 1945 Linder 1955 Wallen 1958 Blair 1959 Collette 1962 Braasch and Smith 1967 Pflieger 1975</td>
<td>Turbidity levels of waters where slough darters are typically found are optimum. Levels where the species is found less often or where food production may be limited is suboptimum.</td>
</tr>
<tr>
<td>V_7 Gerking 1945 Hancock and Sublette 1958 Wallen 1958 Blair 1959 Collette 1962 Braasch and Smith 1967 Cross 1967 Pflieger 1975</td>
<td>Average velocities where slough darters are most often collected are optimum. Velocities that the species does not tolerate are unsuitable.</td>
</tr>
<tr>
<td>V_8 Hancock and Sublette 1958 Stroud 1967 U.S. Environmental Protection Agency 1972</td>
<td>pH levels where slough darters are collected are optimum. Levels considered adequate for growth of freshwater fish have high suitability. Levels that provide only minimum protection or cause death for fish in general are unsuitable.</td>
</tr>
</tbody>
</table>
Table 2. Sample data sets using riverine HSI model.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Data set 1</th>
<th></th>
<th>Data set 2</th>
<th></th>
<th>Data set 3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data</td>
<td>SI</td>
<td>Data</td>
<td>SI</td>
<td>Data</td>
<td>SI</td>
</tr>
<tr>
<td>Dissolved oxygen (mg/l)</td>
<td>V_1</td>
<td>5.0</td>
<td>1.0</td>
<td>3.0</td>
<td>0.4</td>
<td>6.0</td>
</tr>
<tr>
<td>% pool</td>
<td>V_2</td>
<td>45</td>
<td>0.9</td>
<td>30</td>
<td>0.6</td>
<td>75</td>
</tr>
<tr>
<td>Stream gradient (m/km)</td>
<td>V_3</td>
<td>1.5</td>
<td>0.2</td>
<td>1.2</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Substrate type</td>
<td>V_4</td>
<td>C</td>
<td>0.5</td>
<td>B</td>
<td>0.6</td>
<td>A</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>V_5</td>
<td>24</td>
<td>0.9</td>
<td>26</td>
<td>1.0</td>
<td>20.5</td>
</tr>
<tr>
<td>Turbidity (JTU)</td>
<td>V_6</td>
<td>25</td>
<td>0.7</td>
<td>100</td>
<td>1.0</td>
<td>40</td>
</tr>
<tr>
<td>Surface velocity (cm/sec)</td>
<td>V_7</td>
<td>10</td>
<td>0.9</td>
<td>15</td>
<td>0.6</td>
<td>2</td>
</tr>
<tr>
<td>pH</td>
<td>V_8</td>
<td>7</td>
<td>1.0</td>
<td>8.5</td>
<td>0.7</td>
<td>6.5</td>
</tr>
<tr>
<td>Component SI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$C_{F-C} =$</td>
<td></td>
<td>0.80</td>
<td>0.80</td>
<td>0.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{WQ}</td>
<td></td>
<td>0.88</td>
<td>0.40</td>
<td>0.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{OT}</td>
<td></td>
<td>0.02</td>
<td>0.58</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSI</td>
<td></td>
<td>0.02</td>
<td>0.57</td>
<td>0.92</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Sample data sets using lacustrine HSI model.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Data set 1</th>
<th></th>
<th>Data set 2</th>
<th></th>
<th>Data set 3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data</td>
<td>SI</td>
<td>Data</td>
<td>SI</td>
<td>Data</td>
<td>SI</td>
</tr>
<tr>
<td>Dissolved oxygen</td>
<td>V_1</td>
<td>5.5</td>
<td>1.0</td>
<td>5.0</td>
<td>1.0</td>
<td>4.5</td>
</tr>
<tr>
<td>(mg/l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>V_5</td>
<td>22</td>
<td>0.7</td>
<td>20.5</td>
<td>0.5</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbidity (JTU)</td>
<td>V_6</td>
<td>50</td>
<td>1.0</td>
<td>20</td>
<td>0.6</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>V_8</td>
<td>8</td>
<td>0.8</td>
<td>6.5</td>
<td>0.7</td>
<td>9</td>
</tr>
</tbody>
</table>

Component SI

\[C_{WQ} = \]

\[HSI = \]

0.87 0.67 0.83

ADDITIONAL HABITAT MODELS

Optimal riverine slough darter habitat is characterized by the following conditions, assuming water quality is adequate: moderate to highly turbid waters (50-150 JTU); sluggish or quiet waters (≤ 10 cm/sec); low average stream gradient (< 0.5 m/km); high pool to riffle ratio (> 50%); and a mud or silt substrate.

\[HSI = \frac{\text{number of above criteria present}}{5} \]

REFERENCES CITED

Habitat Suitability Index Models: Slough darter

Abstract (Limit: 200 words)

A literature review encompassing habitat and species characteristics of the slough darter (*Etheostoma gracile*) is followed by a discussion of the relationship of habitat variables and life requisites of this species. These data are then incorporated into Habitat Suitability Index models for the slough darter.

This is one in a series of publications describing habitat requirements of selected fish and wildlife species. Numerous literature sources have been consulted in an effort to consolidate scientific data on species habitat relationships. These data have subsequently been synthesized into Habitat Suitability Index (HSI) models. The models are based on suitability indices formulated for variables found to affect the life cycle and survival of the species. The models are designed to be modified to evaluate specific habitat alterations using the HSI model building techniques presented in the U.S. Fish and Wildlife Service's Habitat Evaluation Procedures.

Document Analysis a. Descriptors

- Habitability
- Fishes

b. Identifiers/Open-Ended Terms

- Habitat
- Habitat Suitability Index
- Slough darter
- *Etheostoma gracile*

c. COSATI Field/Group

Availability Statement

Unlimited

Security Class (This Report)

Unclassified

No. of Pages

13
REGION 1
Regional Director
U.S. Fish and Wildlife Service
Lloyd Five Hundred Building, Suite 1692
500 N.E. Multnomah Street
Portland, Oregon 97232

REGION 2
Regional Director
U.S. Fish and Wildlife Service
P.O. Box 1306
Albuquerque, New Mexico 87103

REGION 3
Regional Director
U.S. Fish and Wildlife Service
Federal Building, Fort Snelling
Twin Cities, Minnesota 55111

REGION 4
Regional Director
U.S. Fish and Wildlife Service
Richard B. Russell Building
75 Spring Street, S.W.
Atlanta, Georgia 30303

REGION 5
Regional Director
U.S. Fish and Wildlife Service
One Gateway Center
Newton Corner, Massachusetts 02158

REGION 6
Regional Director
U.S. Fish and Wildlife Service
P.O. Box 25486
Denver Federal Center
Denver, Colorado 80225

REGION 7
Regional Director
U.S. Fish and Wildlife Service
1011 E. Tudor Road
Anchorage, Alaska 99503
As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering the wisest use of our land and water resources, protecting our fish and wildlife, preserving the environmental and cultural values of our national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interests of all our people. The Department also has a major responsibility for American Indian reservation communities and for people who live in island territories under U.S. administration.