Home Archived April 13, 2016
(i)

U.S. Geological Survey

Maps, Imagery, and Publications Hazards Newsroom Education Jobs Partnerships Library About USGS Social Media

USGS Newsroom

USGS Newsroom  
 

USGS Assesses Current Groundwater-Quality Conditions in the Williston Basin Oil Production Area
Released: 11/17/2014 10:00:00 AM

Contact Information:
U.S. Department of the Interior, U.S. Geological Survey
Office of Communications and Publishing
12201 Sunrise Valley Dr, MS 119
Reston, VA 20192
Heidi  Koontz 1-click interview
Phone: 303-202-4763

Rod  Caldwell 1-click interview
Phone: 406-457-5933

Joel Galloway 1-click interview
Phone: 701-250-7402



USGS scientist prepares to sample a domestic well in the Bakken Formation oil and gas production area of North Dakota.
USGS scientist prepares to sample a domestic well in the Bakken Formation oil and gas production area of North Dakota. (High resolution image)

Energy development in the Williston Basin oil production area of Montana and North Dakota, which includes the Bakken and Three Forks Formations, has not affected shallow groundwater quality, according to a recently published study in the journal Groundwater. The paper is based on water samples collected by U.S. Geological Survey scientists from 30 randomly distributed, non-federal domestic wells screened in the upper Fort Union Formation. 

The study compared concentrations of several chemicals to health-based drinking-water standards, analyzed correlations between concentrations and oil and gas well locations and evaluated methane for indications of deep production-zone gases. 

“These results are good news for water users, and the data provide a valuable baseline against which future water-quality data can be compared,” said Peter McMahon, a USGS hydrologist and lead author of the study. “However, it is important to consider these results in the context of groundwater age.” 

Most of the sampled water was more than 1,000 years old based on carbon-14 dating and predates oil and gas development in the study area. Results suggest that shallower wells screened at the water table would be better suited for detecting contamination associated with recent surface spills than the domestic wells sampled by this study. 

Old groundwater could be directly contaminated by recent subsurface leaks from improperly cemented oil and gas wells, but groundwater velocities calculated from carbon-14 ages indicated that the contaminants, if present in groundwater, would not have moved far from their source. 

“The groundwater age results indicate that a long-term commitment to monitoring is needed to assess the effects of energy development on groundwater quality in the Williston Basin production area,” said McMahon. 

The study was the first comprehensive regional assessment of shallow groundwater quality and age in the Williston Basin production area. Inclusion of groundwater-age measurements in assessing the effects of energy development on groundwater quality is a new approach that provides valuable context for water-quality data and can lead to more effective monitoring programs.

This report is a product of the USGS Groundwater Resources Program that provides scientific information and develops interdisciplinary understanding necessary to assess and quantify the availability of the nation’s groundwater resources. Program priorities include conducting regional and national overviews, scientific assessments of critical groundwater issues, field methods and model development and improved access to fundamental groundwater data.


USGS provides science for a changing world. Visit USGS.gov, and follow us on Twitter @USGS and our other social media channels.
Subscribe to our news releases via e-mail, RSS or Twitter.

Links and contacts within this release are valid at the time of publication.

###


 

Accessibility FOIA Privacy Policies and Notices

USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: http://www.usgs.gov/newsroom/article.asp?ID=4054
Page Contact Information: Ask USGS
Page Last Modified: 11/17/2014 10:43:28 AM